Skip to content Skip to sidebar Skip to footer

Pandas, Pivot Table From 2 Columns With Values Being A Count Of One Of Those Columns

I have a pandas dataframe: +---------------+-------------+ | Test_Category | Test_Result | +---------------+-------------+ | Cat_1 | Pass | | Cat_1 | N/A

Solution 1:

Here is problem NaN values are exluded, so necessary use fillna with crosstab:

df1 = pd.crosstab(df['Test_Category'], df['Test_Result'].fillna('n/a'))
print (df1)
Test_Result    Fail  Pass  n/a
Test_Category                 
Cat_1             0     1    1
Cat_2             2     0    0
Cat_3             1     2    1

Or use GroupBy.size with unstack for reshape:

df['Test_Result'] = df['Test_Result'].fillna('n/a')

df1 = df.groupby(['Test_Category','Test_Result']).size().unstack()
print (df1)
Test_Result    Fail  Pass  n/a
Test_Category                 
Cat_1           NaN   1.0  1.0
Cat_2           2.0   NaN  NaN
Cat_3           1.0   2.0  1.0

df1 = df.groupby(['Test_Category','Test_Result']).size().unstack(fill_value=0)
print (df1)
Test_Result    Fail  Pass  n/a
Test_Category                 
Cat_1             0     1    1
Cat_2             2     0    0
Cat_3             1     2    1

Another solution with pivot_table:

df = df.pivot_table(index='Test_Category',columns='Test_Result', aggfunc='size')

Solution 2:

You could construct a new dataframe using unique values in the two columns as indices and columns, and use pandas' iterrows()

df_out = pd.DataFrame(index=df['Test_Category'].unique().tolist(), columns=df['Test_Result'].unique().tolist())

for index, row in df_out.iterrows():
    for col in df_out.columns:
        df_out.loc[index, col] = len(df[(df['Test_Category'] == index) & (df['Test_Result'] == col)])

Output:

       Pass  nan  Fail
Cat1     1    1     0
Cat2     0    0     2
Cat3     2    1     1

Although using groupby() should definitely be faster.

Post a Comment for "Pandas, Pivot Table From 2 Columns With Values Being A Count Of One Of Those Columns"