Removing Rows In Pandas Based On Multiple Columns
In Pandas, I have a dataframe with ZipCode, Age, and a bunch of columns that should all have values 1 or 0, ie: ZipCode Age A B C D 12345 21 0 1 1 1 12345 22 1 0 1 4 23456
Solution 1:
Use isin
to test for membership and all
to test if all row values are True
and use this boolean mask to filter the df:
In[12]:
df[df.ix[:,'A':].isin([0,1]).all(axis=1)]
Out[12]:
ZipCodeAgeABCD012345210111223456451011
Solution 2:
You can opt for a vectorized solution:
In [64]: df[df[['A','B','C','D']].isin([0,1]).sum(axis=1)==4]
Out[64]:
ZipCode Age A B C D
0 12345 21 0 1 1 1
2 23456 45 1 0 1 1
Solution 3:
Other two solutions works well but if you interested in speed you should look at numpy in1d
function:
data=df.loc[:, 'A':]
In [72]: df[np.in1d(data.values,[0,1]).reshape(data.shape).all(axis=1)]
Out[72]:
ZipCode Age A B C D
012345210111223456451011
Timing:
In [73]: %timeit data=df.loc[:, 'A':]; df[np.in1d(data.values,[0,1]).reshape(data.shape).all(axis=1)]
1000 loops, best of3: 558 us per loop
In [74]: %timeit df[df.ix[:,'A':].isin([0,1]).all(axis=1)]
1000 loops, best of3: 843 us per loop
In [75]: %timeit df[df[['A','B','C','D']].isin([0,1]).sum(axis=1)==4]
1000 loops, best of3: 1.44 ms per loop
Post a Comment for "Removing Rows In Pandas Based On Multiple Columns"