Skip to content Skip to sidebar Skip to footer

Summing The Number Of Occurrences Per Day Pandas

I have a data set like so in a pandas dataframe: score timestamp 2013-06-29 00:52:28+00:00 -0.420070 2013-

Solution 1:

If your timestamp index is a DatetimeIndex:

import io
import pandas as pd
content = '''\
timestamp  score
2013-06-29 00:52:28+00:00        -0.420070
2013-06-29 00:51:53+00:00        -0.445720
2013-06-28 16:40:43+00:00         0.508161
2013-06-28 15:10:30+00:00         0.921474
2013-06-28 15:10:17+00:00         0.876710
'''

df = pd.read_table(io.BytesIO(content), sep='\s{2,}', parse_dates=[0], index_col=[0])

print(df)

so df looks like this:

                        score
timestamp                    
2013-06-29 00:52:28 -0.420070
2013-06-29 00:51:53 -0.445720
2013-06-28 16:40:43  0.508161
2013-06-28 15:10:30  0.921474
2013-06-28 15:10:17  0.876710

print(df.index)
# <class 'pandas.tseries.index.DatetimeIndex'>

You can use:

print(df.groupby(df.index.date).count())

which yields

            score
2013-06-28      3
2013-06-29      2

Note the importance of the parse_dates parameter. Without it, the index would just be a pandas.core.index.Index object. In which case you could not use df.index.date.

So the answer depends on the type(df.index), which you have not shown...


Solution 2:

Otherwise, using the resample function.

In [419]: df
Out[419]: 
timestamp
2013-06-29 00:52:28   -0.420070
2013-06-29 00:51:53   -0.445720
2013-06-28 16:40:43    0.508161
2013-06-28 15:10:30    0.921474
2013-06-28 15:10:17    0.876710
Name: score, dtype: float64

In [420]: df.resample('D', how={'score':'count'})

Out[420]: 
2013-06-28    3
2013-06-29    2
dtype: int64

UPDATE : with pandas 0.18+

as @jbochi pointed out, resample with how is now deprecated. Use instead :

df.resample('D').apply({'score':'count'})

Solution 3:

In [145]: df
Out[145]: 
timestamp
2013-06-29 00:52:28   -0.420070
2013-06-29 00:51:53   -0.445720
2013-06-28 16:40:43    0.508161
2013-06-28 15:10:30    0.921474
2013-06-28 15:10:17    0.876710
Name: score, dtype: float64

In [160]: df.groupby(lambda x: x.date).count()
Out[160]: 
2013-06-28    3
2013-06-29    2
dtype: int64

Post a Comment for "Summing The Number Of Occurrences Per Day Pandas"