Summing The Number Of Occurrences Per Day Pandas
I have a data set like so in a pandas dataframe: score timestamp 2013-06-29 00:52:28+00:00 -0.420070 2013-
Solution 1:
If your timestamp
index is a DatetimeIndex
:
import io
import pandas as pd
content = '''\
timestamp score
2013-06-29 00:52:28+00:00 -0.420070
2013-06-29 00:51:53+00:00 -0.445720
2013-06-28 16:40:43+00:00 0.508161
2013-06-28 15:10:30+00:00 0.921474
2013-06-28 15:10:17+00:00 0.876710
'''
df = pd.read_table(io.BytesIO(content), sep='\s{2,}', parse_dates=[0], index_col=[0])
print(df)
so df
looks like this:
score
timestamp
2013-06-29 00:52:28 -0.420070
2013-06-29 00:51:53 -0.445720
2013-06-28 16:40:43 0.508161
2013-06-28 15:10:30 0.921474
2013-06-28 15:10:17 0.876710
print(df.index)
# <class 'pandas.tseries.index.DatetimeIndex'>
You can use:
print(df.groupby(df.index.date).count())
which yields
score
2013-06-28 3
2013-06-29 2
Note the importance of the parse_dates
parameter. Without it, the index would just be a pandas.core.index.Index
object. In which case you could not use df.index.date
.
So the answer depends on the type(df.index)
, which you have not shown...
Solution 2:
Otherwise, using the resample function.
In [419]: df
Out[419]:
timestamp
2013-06-29 00:52:28 -0.420070
2013-06-29 00:51:53 -0.445720
2013-06-28 16:40:43 0.508161
2013-06-28 15:10:30 0.921474
2013-06-28 15:10:17 0.876710
Name: score, dtype: float64
In [420]: df.resample('D', how={'score':'count'})
Out[420]:
2013-06-28 3
2013-06-29 2
dtype: int64
UPDATE : with pandas 0.18+
as @jbochi pointed out, resample with how
is now deprecated. Use instead :
df.resample('D').apply({'score':'count'})
Solution 3:
In [145]: df
Out[145]:
timestamp
2013-06-29 00:52:28 -0.420070
2013-06-29 00:51:53 -0.445720
2013-06-28 16:40:43 0.508161
2013-06-28 15:10:30 0.921474
2013-06-28 15:10:17 0.876710
Name: score, dtype: float64
In [160]: df.groupby(lambda x: x.date).count()
Out[160]:
2013-06-28 3
2013-06-29 2
dtype: int64
Post a Comment for "Summing The Number Of Occurrences Per Day Pandas"