Constructing A Special Matrix In Numpy Dynamically
So my objective is the following, given the size of the matrix s, I am attempting to create a matrix that looks like the following, but for size sxs: [1 1 0] [1 1 1] [0 1 1] For t
Solution 1:
Method #1: Instead of a bunch of 2x2 matrices, it might be easier to look at it as three diagonals of 1 and combine those:
>>> s = 3
>>> np.diag([1]*s,0) + np.diag([1]*(s-1),-1) + np.diag([1]*(s-1), 1)
array([[1, 1, 0],
[1, 1, 1],
[0, 1, 1]])
>>> s = 4
>>> np.diag([1]*s,0) + np.diag([1]*(s-1),-1) + np.diag([1]*(s-1), 1)
array([[1, 1, 0, 0],
[1, 1, 1, 0],
[0, 1, 1, 1],
[0, 0, 1, 1]])
Method #2: (inspired by Divankar's answer), we can think in terms of distance from the centre:
>>>s = 4>>>i,j = np.indices((s,s))>>>(abs(i-j) <= 1).astype(int)
array([[1, 1, 0, 0],
[1, 1, 1, 0],
[0, 1, 1, 1],
[0, 0, 1, 1]])
Method #3: we could take advantage of tril
or triu
and do some arithmetic:
>>> m = np.tril(np.ones((s,s)),1)
>>> m * m.T
array([[ 1., 1., 0., 0., 0.],
[ 1., 1., 1., 0., 0.],
[ 0., 1., 1., 1., 0.],
[ 0., 0., 1., 1., 1.],
[ 0., 0., 0., 1., 1.]])
>>> m = np.tril(np.ones((s,s)),2)
>>> m * m.T
array([[ 1., 1., 1., 0., 0.],
[ 1., 1., 1., 1., 0.],
[ 1., 1., 1., 1., 1.],
[ 0., 1., 1., 1., 1.],
[ 0., 0., 1., 1., 1.]])
Solution 2:
Vectorized approach with broadcasting
-
A = np.arange(s)
out = ((A[:,None] < A+2) & (A[:,None] > A-2)).astype(int)
Sample run -
In [60]: s =3
...: A = np.arange(s)
...: out= ((A[:,None] < A+2) & (A[:,None] > A-2)).astype(int)
...:
In [61]: outOut[61]:
array([[1, 1, 0],
[1, 1, 1],
[0, 1, 1]])
In [62]: s =4
...: A = np.arange(s)
...: out= ((A[:,None] < A+2) & (A[:,None] > A-2)).astype(int)
...:
In [63]: outOut[63]:
array([[1, 1, 0, 0],
[1, 1, 1, 0],
[0, 1, 1, 1],
[0, 0, 1, 1]])
Solution 3:
You could use sympy.Matrix also:
from sympy import Matrix
Matrix(4, 4, lambda i,j: 1if (-2<i-j<2) else0)
Matrix([
[1, 1, 0, 0],
[1, 1, 1, 0],
[0, 1, 1, 1],
[0, 0, 1, 1]])
Post a Comment for "Constructing A Special Matrix In Numpy Dynamically"