Solving Dynamic Number Of Non-linear Equations In Python
Fsolve in Scipy seems to be the right candidate for this, I just need help passing equations dynamically. I appreciate any thoughts in advance. By dynamic I mean number of equatio
Solution 1:
I haven't used Fsolve myself, but according to its documentation it takes a callable function. Something like this handles multiple functions with unknown number of variables. Bear in mind that the args must be ordered correctly here, but each function simply takes a list.
deff1(argList):
x = argList[0]
return x**2deff2(argList):
x = argList[0]
y = argList[1]
return (x+y)**2deff3(argList):
x = argList[0]
return x/3
fs = [f1,f2,f3]
args = [3,5]
for f in fs:
print f(args)
For Fsolve, you could try something like this (untested):
deffunc1(argList, constList):
x = argList[0]
y = argList[1]
alpha = constList[0]
return alpha*x + (1-alpha)*x*y - y
deffunc2(argList, constList):
x = argList[0]
y = argList[1]
z = argList[2]
beta = constList[1]
return beta*x + (1- beta)*x*z - z
deffunc3(argList, constList):
x = argList[0]
w = argList[1] ## or, if you want to pass the exact same list to each function, make w argList[4]
gamma = constList[2]
return gama*x + (1 -gama)*x*w - w
deffunc4(argList, constList):
return A*x + B*y + C*z + D*w -E ## note that I moved E to the left hand side
functions = []
functions.append((func1, argList1, constList1, args01))
# args here can be tailored to fit your function structure# Just make sure to align it with the way you call your function:# args = [argList, constLit]# args0 can be null.
functions.append((func1, argList2, constList2, args02))
functions.append((func1, argList3, constList3, args03))
functions.append((func1, argList4, constList4, args04))
for func,argList, constList, args0 in functions: ## argList is the (Vector) variable you're solving for.
Fsolve(func = func, x0 = ..., args = constList, ...)
Post a Comment for "Solving Dynamic Number Of Non-linear Equations In Python"