Skip to content Skip to sidebar Skip to footer

Keyword Search Between Two Dataframes Using Python Pandas

Hi I have two DataFrames like below DF1 Alpha | Numeric | Special and, or | 1,2,3,4,5| @,$,& and DF2 with single column Content | boy or girl | school @ mo

Solution 1:

Solution is s bit complicated, because for multiple match (row 2) need only matched first column df1:

df1 = pd.DataFrame({'Alpha':['and','or', None, None,None],
                    'Numeric':['1','2','3','4','5'],
                    'Special':['@','$','&', None, None]})
print (df1)
  Alpha Numeric Special
0and1       @
1or2       $
2None3       &
3None4None4None5None


df2 = pd.DataFrame({'Content':['boy or girl','school @ morn', 
                               '1 school @ morn', 'Pechi']})
print (df2)
           Content
0      boy or girl
1    school @ morn
21 school @ morn
3            Pechi

#reshape df1
df1.columns = [np.arange(len(df1.columns)), df1.columns]
df11 = df1.unstack()
          .reset_index(level=2,drop=True)
          .rename_axis(('col_order','col_name'))
          .dropna()
          .reset_index(name='val')
print (df11)
   col_order col_name  val
00    Alpha  and10    Alpha   or21Numeric131Numeric241Numeric351Numeric461Numeric572  Special    @
82  Special    $
92  Special    &

#split column by whitespaces, reshape
df22 = df2['Content'].str.split(expand=True)
                     .stack()
                     .rename('val')
                     .reset_index(level=1,drop=True)
                     .rename_axis('idx').reset_index()
print (df22)
    idx     val
00     boy
10or20    girl
31  school
41       @
51    morn
62172  school
82       @
92    morn
103   Pechi

#left join dataframes, remove non match values by dropna#also for multiple match get always first - use sorting with drop_duplicatesdf = pd.merge(df22, df11, on='val', how='left')
       .dropna(subset=['col_name'])
       .sort_values(['idx','col_order'])
       .drop_duplicates(['idx'])

#if necessary get values from df2#if no value matched add Other categorydf = pd.concat([df2, df.set_index('idx')], axis=1)
       .fillna({'col_name':'Other'})[['val','col_name','Content']]
print (df)
   val col_name          Content
0   or    Alpha      boy or girl
1    @  Special    school @ morn
2    1  Numeric  1 school @ morn
3  NaN    Other            Pechi

EDIT:

:

df1 = pd.DataFrame({'Alpha':['and','or', None, None,None],
                    'Numeric':['1','2','3','4','5'],
                    'Special':['@','$','&', None, None]})


df2 = pd.DataFrame({'Content':['boy OR girl','school @ morn', 
                               '1 school @ morn', 'Pechi']})

#If df1 Alpha values are not lower#df1['Alpha'] = df1['Alpha'].str.lower()
df1.columns = [np.arange(len(df1.columns)), df1.columns]

df11 = (df1.unstack()
          .reset_index(level=2,drop=True)
          .rename_axis(('col_order','col_name'))
          .dropna()
          .reset_index(name='val_low'))

df22 = (df2['Content'].str.split(expand=True)
                     .stack()
                     .rename('val')
                     .reset_index(level=1,drop=True)
                     .rename_axis('idx')
                     .reset_index())

#convert columns values to lower to new column
df22['val_low'] = df22['val'].str.lower()                    

df = (pd.merge(df22, df11, on='val_low', how='left')
       .dropna(subset=['col_name'])
       .sort_values(['idx','col_order'])
       .drop_duplicates(['idx']))


df = (pd.concat([df2, df.set_index('idx')], axis=1)
       .fillna({'col_name':'Other'})[['val','col_name','Content']])
print (df)
   val col_name          Content
0   OR    Alpha      boy OR girl
1    @  Special    school @ morn
2    1  Numeric  1 school @ morn
3  NaN    Other            Pechi

Post a Comment for "Keyword Search Between Two Dataframes Using Python Pandas"