Skip to content Skip to sidebar Skip to footer

Initializing A Symmetric Theano Dmatrix From Its Upper Triangle

I'm trying to fit a Theano model that is parametrized in part by a symmetric matrix A. In order to enforce the symmetry of A, I want to be able to construct A by passing in just th

Solution 1:

You could use the theano.tensor.triu and add the result to its transpose, then subtract the diagonal.

Copy+Pasteable code:

import numpy as np
import theano
import theano.tensor as T
theano.config.floatX = 'float32'

mat = T.fmatrix()
sym1 = T.triu(mat) + T.triu(mat).T
diag = T.diag(T.diagonal(mat))
sym2 = sym1 - diag

f_sym1 = theano.function([mat], sym1)
f_sym2 = theano.function([mat], sym2)

m = np.arange(9).reshape(3, 3).astype(np.float32)

print m
# [[ 0.  1.  2.]
#  [ 3.  4.  5.]
#  [ 6.  7.  8.]]print f_sym1(m)
# [[  0.   1.   2.]
#  [  1.   8.   5.]
#  [  2.   5.  16.]]print f_sym2(m)
# [[ 0.  1.  2.]
#  [ 1.  4.  5.]
#  [ 2.  5.  8.]]

Does this help? This approach would require a full matrix to be passed, but would ignore everything below the diagonal and symmetrize using the upper triangle.

We can also take a look at the derivative of this function. In order not to deal with a multidimensional output, we can e.g. look at the gradient of the sum of the matrix entries

sum_grad = T.grad(cost=sym2.sum(), wrt=mat)
f_sum_grad = theano.function([mat], sum_grad)

print f_sum_grad(m)
# [[ 1.  2.  2.]
#  [ 0.  1.  2.]
#  [ 0.  0.  1.]]

This reflects the fact that the upper triangular entries figure doubly in the sum.


Update: You can do normal indexing:

n = 4
num_triu_entries = n * (n + 1) / 2

triu_index_matrix = np.zeros([n, n], dtype=int)
triu_index_matrix[np.triu_indices(n)] = np.arange(num_triu_entries)
triu_index_matrix[np.triu_indices(n)[::-1]] = np.arange(num_triu_entries)

triu_vec = T.fvector()
triu_mat = triu_vec[triu_index_matrix]

f_triu_mat = theano.function([triu_vec], triu_mat)

print f_triu_mat(np.arange(1, num_triu_entries + 1).astype(np.float32))

# [[  1.   2.   3.   4.]#  [  2.   5.   6.   7.]#  [  3.   6.   8.   9.]#  [  4.   7.   9.  10.]]

Update: To do all of this dynamically, one way is to write a symbolic version of triu_index_matrix. This can be done with some shuffling of aranges. But probably I am overcomplicating.

n = T.iscalar()
n_triu_entries = (n * (n + 1)) / 2
r = T.arange(n)

tmp_mat = r[np.newaxis, :] + (n_triu_entries - n - (r * (r + 1)) / 2)[::-1, np.newaxis]
triu_index_matrix = T.triu(tmp_mat) + T.triu(tmp_mat).T - T.diag(T.diagonal(tmp_mat))

triu_vec = T.fvector()
sym_matrix = triu_vec[triu_index_matrix]

f_triu_index_matrix = theano.function([n], triu_index_matrix)
f_dynamic_sym_matrix = theano.function([triu_vec, n], sym_matrix)

print f_triu_index_matrix(5)
# [[ 0  1  2  3  4]#  [ 1  5  6  7  8]#  [ 2  6  9 10 11]#  [ 3  7 10 12 13]# [ 4  8 11 13 14]]
print f_dynamic_sym_matrix(np.arange(1., 16.).astype(np.float32), 5)
# [[  1.   2.   3.   4.   5.]#  [  2.   6.   7.   8.   9.]#  [  3.   7.  10.  11.  12.]#  [  4.   8.  11.  13.  14.]#  [  5.   9.  12.  14.  15.]]

Post a Comment for "Initializing A Symmetric Theano Dmatrix From Its Upper Triangle"