Pandas Series Replace Using Dictionary With Regex Keys
Suppose there is a dataframe defined as df = pd.DataFrame({'Col_1': ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', '0'], 'Col_2': ['a', 'b', 'c', 'd', 'e',
Solution 1:
Use anchors (^
and $
, that is):
repl_dict = {re.compile('^[ABH-LP-Z]$'): 'DDD',
re.compile('^[CDEFG]$'): 'BBB WTT',
re.compile('^[MNO]$'): 'AAA WTT',
re.compile('^[0-9]+$'): 'CCC'}
Which produces with df['Col_1'].replace(repl_dict, regex=True)
:
0 DDD
1 DDD
2 BBB WTT
3 BBB WTT
4 BBB WTT
5 BBB WTT
6 BBB WTT
7 DDD
8 DDD
9 DDD
10 CCC
Post a Comment for "Pandas Series Replace Using Dictionary With Regex Keys"