Apply Hierarchy Or Multi-index To Pandas Columns
I have seen lots of examples on how to arrange dataframe row indexes hierarchically, but I am trying to do the same for columns and am not understanding the syntax: I am reading th
Solution 1:
Here is a quick-fix solution for you:
data = pd.read_csv('data.csv')
>>>arrays = [[ '', 'Subject1', 'Subject1', 'Subject2', 'Subject2'], data.columns]>>>df = pd.DataFrame(data.values, columns=arrays)>>>print df
Subject1 Subject2
rno mark1 lab1 mark2 lab2
0 1 78 45 34 54
1 2 23 54 87 46
[2 rows x 5 columns]
Just another way to do the same:
>>>data = pd.read_csv('data.csv')>>>data_pieces = [data.ix[:, [0]], data.ix[:, [1, 2]], data.ix[:, [3,4]]]>>>data = pd.concat(data_pieces, axis=1, keys=['','Subject1', 'Subject2'])>>>print data
Subject1 Subject2
rno mark1 lab1 mark2 lab2
0 1 78 45 34 54
1 2 23 54 87 46
[2 rows x 5 columns]
Post a Comment for "Apply Hierarchy Or Multi-index To Pandas Columns"