Skip to content Skip to sidebar Skip to footer

Python Pandas Change Duplicate Timestamp To Unique

I have a file containing duplicate timestamps, maximum two for each timestamp, actually they are not duplicate, it is just the second timestamp needs to add a millisecond timestamp

Solution 1:

Setup

In [69]:df=DataFrame(dict(time=x))In [70]:dfOut[70]:time02013-01-01 09:01:0012013-01-01 09:01:0022013-01-01 09:01:0132013-01-01 09:01:0142013-01-01 09:01:0252013-01-01 09:01:0262013-01-01 09:01:0372013-01-01 09:01:0382013-01-01 09:01:0492013-01-01 09:01:04

Find the locations where the difference in time from the previous row is 0 seconds

In [71]: mask = (df.time-df.time.shift()) == np.timedelta64(0,'s')

In [72]: mask
Out[72]: 
0False1True2False3True4False5True6False7True8False9True
Name: time, dtype: bool

Set theose locations to use an offset of 5 milliseconds (In your question you used 500 but could be anything). This requires numpy >= 1.7. (Not that this syntax will be changing in 0.13 to allow a more direct df.loc[mask,'time'] += pd.offsets.Milli(5)

In [73]:df.loc[mask,'time']=df.time[mask].apply(lambdax:x+pd.offsets.Milli(5))In [74]:dfOut[74]:time02013-01-01 09:01:0012013-01-01 09:01:00.00500022013-01-01 09:01:0132013-01-01 09:01:01.00500042013-01-01 09:01:0252013-01-01 09:01:02.00500062013-01-01 09:01:0372013-01-01 09:01:03.00500082013-01-01 09:01:0492013-01-01 09:01:04.005000

Solution 2:

So this algorithm should work very well... I'm just having a hell of a time with numpy's datetime datatypes.

In [154]:dfOut[154]:002011/1/49:14:0012011/1/49:15:0022011/1/49:15:0132011/1/49:15:0142011/1/49:15:0252011/1/49:15:0262011/1/49:15:0372011/1/49:15:0382011/1/49:15:04In [155]:((dt.diff()==0)*.005)Out[155]:00.00010.00020.00030.00540.00050.00560.00070.00580.000Name:0,dtype:float64

And the idea is to add those two together. Of course, one is datetime64 and the other is float64. For whatever reasons, np.timedelta64 doesn't operate on arrays? Anyway if you can sort out the dtype issues that will work.

Solution 3:

Assuming - as you have shown in your example that they are sequential:

lasttimestamp = None
for ts = readtimestamp(infile): # I will leave this to you
   if ts == lasttimestamp:
      ts += inc_by  # and this
   lasttimestamp = ts
   writetimestamp(outfile, ts) # and this to

Post a Comment for "Python Pandas Change Duplicate Timestamp To Unique"