How To Find The Sum Of Elements Above And Below The Diagonal Of A Matrix In Python?
Solution 1:
You can use np.triu
, np.tril
and np.trace
to compute these sums (your question does not specify whether or not you are allowed to leverage numpy
):
import numpy as np
np.random.seed(0)
A = np.random.randint(0,10,size=(5,5))
Gives:
[[5 0 3 3 7][9 3 5 2 4][7 6 8 8 1][6 7 7 8 1][5 9 8 9 4]]
Then:
upper_sum = np.triu(A).sum()-np.trace(A)
lower_sum = np.tril(A).sum()-np.trace(A)
Yields:
34
73
Solution 2:
Here is an example case demonstrating how to find the sum in both cases, using nested loop:
matrix = [[i+j for j inrange(4)] for i inrange(4)]
for row in matrix:
print(" ".join(list(map(str,row))))
totalSum = 0for i inrange(1,len(matrix)):
for j inrange(i):
totalSum += matrix[i][j]
print("Below sum: ", totalSum)
totalSum = 0for i inrange(len(matrix)):
for j inrange(i+1,len(matrix)):
totalSum += matrix[i][j]
print("Above sum: ", totalSum)
Output:
0 1 2 3
1 2 3 4
2 3 4 5
3 4 5 6
Below sum: 18
Above sum: 18
You can also use these one-liners:
Below diagonal:
totalSum = sum([matrix[i][j] for i inrange(1,len(matrix)) for j inrange(i)])
Above diagonal:
totalSum = sum([matrix[i][j] for i inrange(len(matrix)) for j inrange(i+1,len(matrix))])
If you want to sum all numbers above and below the main diagonal you can perform an index check:
totalSum = 0for i in range(len(matrix)):
for j in range(len(matrix)):
if not i==j:
totalSum += matrix[i][j]
print("Sum: ", totalSum)
Yet, another way of finding that sum (although not recommended) is to find the total sum of the matrix and the sum of the main diagonal and then perform a subtraction to find the final sum:
matrix = [[i+j for j inrange(4)] for i inrange(4)]
for row in matrix:
print(" ".join(list(map(str,row))))
matrixSum = sum([sum(elem for elem in row) for row in matrix])
diagonalSum = sum([matrix[i][i] for i inrange(len(matrix))])
finalSum = matrixSum - diagonalSum
print("Matrix sum: ", matrixSum)
print("Diagonal sum: ", diagonalSum)
print("Final sum: ", finalSum)
Output:
0 1 2 3
1 2 3 4
2 3 4 5
3 4 5 6
Matrix sum: 48
Diagonal sum: 12
Final sum: 36
Note: Mind the syntax in the print
statements as you're using Python 2 and my answer is in Python 3.
Solution 3:
You can acomplish this with numpy.triu_indices
. I have commented below each step to guide you through it. Basically you get the upper right indices with numpy.triu_indices
and loop over them to get the elements. You sum all of the elements except the ones in the diagonal.
import numpy as np
m = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
triu = np.triu_indices(m.ndim+1) # Get upper right indices of m
triu_idx = list(zip(triu[0],triu[1])) # List of tuples for the upper right indices
cum_sum = 0 # Initialize sum
for x in triu_idx: # Loop over the upper right indices
if x[0] != x[1]: # Exclude diagonal elements
cum_sum += m[x] # Add to sum
print(cum_sum) # Output 11
Given the matrix
[[1 2 3]
[4 5 6]
[7 8 9]]
It outputs 11.
Solution 4:
Let's assume you have a 3x3 matrix.
[[a11, a12, a13],
[a21, a22, a23],
[a31, a32, a33]]
Do you find any similarity in the indices of the upper triangular and lower triangular parts? (Hover on the below text part to know the answer).
The first index of the upper triangle is lower in value as compared to the second index. Similarly, the first index is smaller than the second index in the lower triangle. Moreover, for diagonal elements, the indices are same!
Now, assuming you have written the above code yourself, I hope that you can do this one yourself, for now you know the logic. It will be two loops (one to traverse the rows, and one to traverse the columns), and some if statements.
Solution 5:
Here is a fast method using scipy.spatial.distance.squareform
for the triangles and np.einsum
for the diagonal:
>>>import numpy as np>>>from scipy.spatial.distance import squareform>>>>>>x = np.arange(36).reshape(6, 6)>>>>>>sum_ut = squareform(x, checks=False).sum()>>>sum_dg = np.einsum('ii', x)>>>sum_lt = squareform(x.T, checks=False).sum()
Timings:
>>>timeit(lambda: squareform(x, checks=False).sum())
6.272806407185271
>>>timeit(lambda: np.einsum('ii', x))
1.3961836302187294
>>>timeit(lambda: squareform(x.T, checks=False).sum())
6.6827554509509355
For comparison:
>>>timeit(lambda: np.triu(x, 1).sum())
13.85556498519145
>>>timeit(lambda: np.trace(x))
3.081781509099528
>>>timeit(lambda: np.tril(x, -1).sum())
13.659938262077048
Post a Comment for "How To Find The Sum Of Elements Above And Below The Diagonal Of A Matrix In Python?"