Define Recursive Function In Pandas Dataframe
I can't seem to find the answer to my question so I'm trying my luck on here. Would very much appreciate your help. I've got a Pandas dataframe with values in Col1 and Col2. Instea
Solution 1:
You could try something like this.
import pandas as pd
import numpy as np
df = pd.DataFrame({'date': [1,2,3,4,5,6],
'col_1': [951, 909, 867, 844, 824, 826],
'col_2': [179, 170, 164, 159, 153, 149]})
col_2_update_list = []
for i, row in df.iterrows():
if i != 0:
today_col_1 = df.at[i,'col_1']
prev_day_col_2 = df.at[i-1,'col_2']
new_col_2_val = prev_day_col_2 * today_col_1
col_2_update_list.append(new_col_2_val)
else:
col_2_update_list.append(np.nan)
df['updated_col_2'] = col_2_update_list
Solution 2:
This avoids the use of loops but you need to create 2 new columns:
import pandas as pd
import numpy as np
import sys
df = pd.DataFrame({'date': [1,2,3,4,5,6],
'col_1': [951, 909, 867, 844, 824, 826],
'col_2': [179, np.nan, 164, 159, np.nan, 149]})
print(df)
# Compare 2 columns
df['col_4'] = df['col_2'].fillna(method='ffill')*df['col_1']
df['col_3'] = df['col_2'].fillna(sys.maxsize)
df['col_2'] = df[['col_4','col_3']].min(axis=1).astype(int)
df = df.drop(['col_4', 'col_3'], axis = 1)
print(df)
Post a Comment for "Define Recursive Function In Pandas Dataframe"