Skip to content Skip to sidebar Skip to footer

Ploting Multiple Gaussians From Pandas File

I am trying to plot multiple gaussians on one plot with different heights, widths and centers from this type of dataframe: Any idea on how to go about it?

Solution 1:

We will reuse the Gaussian plotter as defined in

(The code is repeated here)

Data

The following code generates the above dataframe.

data = [
    (24.122348, 1.827472, 98),
    (24.828252, 4.333549, 186),
    (26.810812, 1.728494, 276),
    (25.997897, 1.882424, 373),
    (24.503944, 2.222210, 471),
    (27.488572, 1.750039, 604),
    (31.556823, 3.844592, 683),
    (27.920951, 0.891394, 792),
    (27.009054, 1.917744, 897),
]

df = pd.DataFrame(data, columns=["height", "fwhm", "center"])

Gaussian

Taken from the reference post above.

import matplotlib.cm as mpl_cm
import matplotlib.colors as mpl_colors
import matplotlib.pyplot as plt
import numpy as np

from scipy.spatial.distance import cdist


classGaussian:
    def__init__(self, size):
        self.size = size
        self.center = np.array(self.size) / 2
        self.axis = self._calculate_axis()

    def_calculate_axis(self):
        """
            Generate a list of rows, columns over multiple axis.

            Example:
                Input: size=(5, 3)
                Output: [array([0, 1, 2, 3, 4]), array([[0], [1], [2]])]
        """
        axis = [np.arange(size).reshape(-1, *np.ones(idx, dtype=np.uint8))
                for idx, size inenumerate(self.size)]
        return axis

    defupdate_size(self, size):
        """ Update the size and calculate new centers and axis.  """
        self.size = size
        self.center = np.array(self.size) / 2
        self.axis = self._calculate_axis()

    defcreate(self, dim=1, fwhm=3, center=None):
        """ Generate a gaussian distribution on the center of a certain width.  """
        center = center if center isnotNoneelse self.center[:dim]
        distance = sum((ax - ax_center) ** 2for ax_center, ax inzip(center, self.axis))
        distribution = np.exp(-4 * np.log(2) * distance / fwhm ** 2)
        return distribution

    defcreates(self, dim=2, fwhm=3, centers: np.ndarray = None):
        """ Combines multiple gaussian distributions based on multiple centers.  """
        centers = np.array(centers or np.array([self.center]).T).T
        indices = np.indices(self.size).reshape(dim, -1).T

        distance = np.min(cdist(indices, centers, metric='euclidean'), axis=1)
        distance = np.power(distance.reshape(self.size), 2)

        distribution = np.exp(-4 * np.log(2) * distance / fwhm ** 2)
        return distribution

    @staticmethoddefplot(distribution, show=True):
        """ Plotter, in case you do not know the dimensions of your distribution, or want the same interface.  """iflen(distribution.shape) == 1:
            return Gaussian.plot1d(distribution, show)
        iflen(distribution.shape) == 2:
            return Gaussian.plot2d(distribution, show)
        iflen(distribution.shape) == 3:
            return Gaussian.plot3d(distribution, show)
        raise ValueError(f"Trying to plot {len(distribution.shape)}-dimensional data, "f"Only 1D, 2D, and 3D distributions are valid.")

    @staticmethoddefplot1d(distribution, show=True, vmin=None, vmax=None, cmap=None):
        norm = mpl_colors.Normalize(
                vmin=vmin if vmin isnotNoneelse distribution.min(),
                vmax=vmax if vmin isnotNoneelse distribution.max()
        )
        cmap = mpl_cm.ScalarMappable(norm=norm, cmap=cmap or mpl_cm.get_cmap('jet'))
        cmap.set_array(distribution)
        c = [cmap.to_rgba(value) for value in distribution]  # defines the color

        fig, ax = plt.subplots()
        ax.scatter(np.arange(len(distribution)), distribution, c=c)
        ax.plot(distribution)

        fig.colorbar(cmap)
        if show: plt.show()
        return fig

    @staticmethoddefplot2d(distribution, show=True):
        fig, ax = plt.subplots()
        img = ax.imshow(distribution, cmap='jet')
        fig.colorbar(img)
        if show: plt.show()
        return fig

    @staticmethoddefplot3d(distribution, show=True):
        m, n, c = distribution.shape
        x, y, z = np.mgrid[:m, :n, :c]
        out = np.column_stack((x.ravel(), y.ravel(), z.ravel(), distribution.ravel()))
        x, y, z, values = np.array(list(zip(*out)))

        fig = plt.figure()
        ax = fig.add_subplot(111, projection='3d')

        # Standalone colorbar, directly creating colorbar on fig results in strange artifacts.
        img = ax.scatter([0, 0], [0, 0], [0, 0], c=[0, 1], cmap=mpl_cm.get_cmap('jet'))
        img.set_visible = False
        fig.colorbar(img)

        ax.scatter(x, y, z, c=values, cmap=mpl_cm.get_cmap('jet'))
        if show: plt.show()
        return fig

Solution

Since it is unclear to me how you want to the Gaussian distributions to interact when they are in part of multiple widths, I will assume that you want the maximum value.

Then the main logic is that we can now generate a unique Gaussian distribution for every center with given full width half maximum (fwhm), and take the maximum of all the distrubutions.

distribution = np.zeros((1200,))

df = pd.DataFrame(data, columns=["height", "fwhm", "center"])
gaussian = Gaussian(size=distribution.shape)

for idx, row in df.iterrows():
    distribution = np.maximum(distribution, gaussian.create(fwhm=row.fwhm, center=[row.center]))

gaussian.plot(distribution, show=True)

Result

Merged Multi Gaussian distribution


Edit

Since the question now asks for a different distribution, you can adjust the code in the create (and creates) method with the following to get different types of distributions:

defcreate(self, dim=1, fwhm=3, center=None):
    """ Generate a gaussian distribution on the center of a certain width.  """
    center = center if center isnotNoneelse self.center[:dim]
    distance = sum((ax - ax_center) for ax_center, ax inzip(center, self.axis))
    distribution = sps.beta.pdf(distance / max(distance), a=3, b=100)
    return distribution

Where sps.beta comes from import scipy.stats as sps, and can be changed with a gamma distribution as well. e.g. distribution = sps.gamma.pdf(distance, 10, 40).

Note that the distance is no longer squared, and that the argument fwhm, could be replaced by the parameters required for the distribution.

Post a Comment for "Ploting Multiple Gaussians From Pandas File"