Applying Complex Function To Several Timeseries
Solution 1:
You can use map
:
ts.map(direction_day)2016-1-10.1666672016-1-20.0000002016-1-30.1666672016-1-40.6666672016-1-50.0000002016-1-6-0.166667
Or apply
(produce the same result)
ts.apply(direction_day)
Or apply
with lambda (produce the same result)
ts.apply(lambda y: direction_day(y))
Each method will be applied element-wise (for value of a Series
) since a Series
has only one column. DataFrame
have methods working element-wise or by row / column (see this question for more detail). In your case, values of the Series
are arrays of arrays, so the entire array will be passed to the function. If you want more control, I suggest using a DataFrame
instead of a Series
containing an array which is not the preferred way to work in pandas. But your data has more than two dimensions (3), pandas also provide another data structure called Panel but I have never worked with Panel
so I cannot help you.
As an example, this kind of array will be passed to your direction_day
function:
[[ 1.76405235, 0.40015721, 0.97873798],
[ 2.2408932 , 1.86755799, -0.97727788],
[ 0.95008842, -0.15135721, -0.10321885],
[ 0.4105985 , 0.14404357, 1.45427351]]
Solution 2:
ts.apply(direction_day)2016-1-1-0.3333332016-1-2-0.5000002016-1-3-0.3333332016-1-40.0000002016-1-50.1666672016-1-60.6666672016-1-70.1666672016-1-80.1666672016-1-90.3333332016-1-100.0000002016-1-11-0.3333332016-1-120.1666672016-1-13-0.5000002016-1-140.1666672016-1-150.0000002016-1-16-0.3333332016-1-17-0.1666672016-1-18-0.1666672016-1-19-0.1666672016-1-200.000000dtype:float64
Post a Comment for "Applying Complex Function To Several Timeseries"