Make A Numpy Array With Shape And Offset Argument In Another Style
I wanted to access my array both as a 3-element entity (3d position) and individual element (each of x,y,z coordinate). After some researching, I ended up doing the following. >
Solution 1:
In reference to the docs page, https://docs.scipy.org/doc/numpy-1.14.0/reference/arrays.dtypes.html
you are using the fields dictionary form, with (data-type, offset)
value
{'field1': ..., 'field2': ..., ...}
dt1 = {'pos': (('<f8', (3,)), 0),
'x': (('<f8', 1), 0),
'y': (('<f8', 1), 8),
'z': (('<f8', 1), 16)}
The display for the resulting dtype
is the other dictionary format:
{'names': ..., 'formats': ..., 'offsets': ..., 'titles': ..., 'itemsize': ...}
In [15]: np.dtype(dt1)
Out[15]: dtype({'names':['x','pos','y','z'],
'formats':['<f8',('<f8', (3,)),'<f8','<f8'],
'offsets':[0,0,8,16], 'itemsize':24})
In [16]: np.dtype(dt1).fields
Out[16]:
mappingproxy({'pos': (dtype(('<f8', (3,))), 0),
'x': (dtype('float64'), 0),
'y': (dtype('float64'), 8),
'z': (dtype('float64'), 16)})
offsets
aren't mentioned any where else on the documentation page.
The last format is a union
type. It's a little unclear as to whether that's allowed or discouraged. The examples don't seem to work. There have been some changes in how multifield indexing works, and that may have affected this.
Let's play around with various ways of viewing the array:
In [25]: arr
Out[25]:
array([(0., [ 0. , 10. , 0. ], 10., 0. ),
(1., [ 1. , 11. , 0.1], 11., 0.1),
(2., [ 2. , 12. , 0.2], 12., 0.2),
(3., [ 3. , 13. , 0.3], 13., 0.3),
(4., [ 4. , 14. , 0.4], 14., 0.4)],
dtype={'names':['x','pos','y','z'], 'formats':['<f8',('<f8', (3,)),'<f8','<f8'], 'offsets':[0,0,8,16], 'itemsize':24})
In [29]: dt3=[('x','<f8'),('y','<f8'),('z','<f8')]
In [30]: np.dtype(dt3)
Out[30]: dtype([('x', '<f8'), ('y', '<f8'), ('z', '<f8')])
In [31]: np.dtype(dt3).fields
Out[31]:
mappingproxy({'x': (dtype('float64'), 0),
'y': (dtype('float64'), 8),
'z': (dtype('float64'), 16)})
In [32]: arr.view(dt3)
Out[32]:
array([(0., 10., 0. ), (1., 11., 0.1), (2., 12., 0.2), (3., 13., 0.3),
(4., 14., 0.4)], dtype=[('x', '<f8'), ('y', '<f8'), ('z', '<f8')])
In [33]: arr['pos']
Out[33]:
array([[ 0. , 10. , 0. ],
[ 1. , 11. , 0.1],
[ 2. , 12. , 0.2],
[ 3. , 13. , 0.3],
[ 4. , 14. , 0.4]])
In [35]: arr.view('f8').reshape(5,3)
Out[35]:
array([[ 0. , 10. , 0. ],
[ 1. , 11. , 0.1],
[ 2. , 12. , 0.2],
[ 3. , 13. , 0.3],
[ 4. , 14. , 0.4]])
In [37]: arr.view(dt4)
Out[37]:
array([([ 0. , 10. , 0. ],), ([ 1. , 11. , 0.1],),
([ 2. , 12. , 0.2],), ([ 3. , 13. , 0.3],),
([ 4. , 14. , 0.4],)], dtype=[('pos', '<f8', (3,))])
In [38]: arr.view(dt4)['pos']
Out[38]:
array([[ 0. , 10. , 0. ],
[ 1. , 11. , 0.1],
[ 2. , 12. , 0.2],
[ 3. , 13. , 0.3],
[ 4. , 14. , 0.4]])
Post a Comment for "Make A Numpy Array With Shape And Offset Argument In Another Style"