Convert Pandas Dataframe Of Lists To Dict Of Dataframes
I have a dataframe (with a DateTime index) , in which some of the columns contain lists, each with 6 elements. In: dframe.head() Out: A
Solution 1:
You can use dict comprehension with assign
and for select values of lists
use str[0]
, str[1]
:
N=6dfs= {i:df.assign(B=df['B'].str[i-1], C=df['C'].str[i-1])foriinrange(1,N+1)}
print(dfs[1])timestampABCD02017-05-01 00:32:25 30-35121104 49.9312017-05-01 00:32:55 30-35191106 49.9422017-05-01 00:33:25 30-35141105 49.9132017-05-01 00:33:55 30-35171105 49.9142017-05-01 00:34:25 30-35151104 49.94
Another solution:
dfs= {i:df.apply(lambdax:x.str[i-1] iftype(x.iat[0])==listelsex)foriinrange(1,7)}
print(dfs[1])timestampABCD02017-05-01 00:32:25 30-35121104 49.9312017-05-01 00:32:55 30-35191106 49.9422017-05-01 00:33:25 30-35141105 49.9132017-05-01 00:33:55 30-35171105 49.9142017-05-01 00:34:25 30-35151104 49.94
Timings:
df = pd.concat([df]*10000).reset_index(drop=True)
In [185]: %timeit {i:df.assign(B=df['B'].str[i-1], C=df['C'].str[i-1]) foriinrange(1,N+1)}
1loop, best of 3: 420 ms per loop
In [186]: %timeit {i:df.apply(lambda x: x.str[i-1] iftype(x.iat[0]) == list else x) foriinrange(1,7)}
1loop, best of 3: 447 ms per loop
In [187]: %timeit {(i+1):df.applymap(lambda x: x[i] iftype(x) == list else x) foriinrange(6)}
1loop, best of 3: 881 ms per loop
Solution 2:
Setup
df=pd.DataFrame({'A': {'2017-05-01 00:32:25':30,
'2017-05-01 00:32:55':30,
'2017-05-01 00:33:25':30,
'2017-05-01 00:33:55':30,
'2017-05-01 00:34:25':30},'B': {'2017-05-01 00:32:25': [-3512, 375, -1025, -358, -1296, -4019],
'2017-05-01 00:32:55': [-3519, 372, -1026, -361, -1302, -4020],
'2017-05-01 00:33:25': [-3514, 371, -1026, -360, -1297, -4018],
'2017-05-01 00:33:55': [-3517, 377, -1030, -363, -1293, -4027],
'2017-05-01 00:34:25': [-3515, 372, -1033, -361, -1299, -4025]},'C': {'2017-05-01 00:32:25': [1104, 1643, 625, 1374, 5414, 2066],
'2017-05-01 00:32:55': [1106, 1643, 622, 1385, 5441, 2074],
'2017-05-01 00:33:25': [1105, 1643, 623, 1373, 5445, 2074],
'2017-05-01 00:33:55': [1105, 1646, 620, 1384, 5438, 2076],
'2017-05-01 00:34:25': [1104, 1645, 613, 1374, 5431, 2082]},'D': {'2017-05-01 00:32:25':49.93,
'2017-05-01 00:32:55':49.94,
'2017-05-01 00:33:25':49.1,
'2017-05-01 00:33:55':49.91,
'2017-05-01 00:34:25':49.94}})
Solution
Construct the df dict using dict comprehension. The sub df is generated using the applymap function. It can convert all columns with a list of 6 elements:
dict_of_dfs= {(i+1):df.applymap(lambdax:x[i] iftype(x)==listelsex)foriinrange(6)}
print(dict_of_dfs[1])ABCD2017-05-01 00:32:25 30-35121104 49.932017-05-01 00:32:55 30-35191106 49.942017-05-01 00:33:25 30-35141105 49.102017-05-01 00:33:55 30-35171105 49.912017-05-01 00:34:25 30-35151104 49.94print(dict_of_dfs[2])ABCD2017-05-01 00:32:25 303751643 49.932017-05-01 00:32:55 303721643 49.942017-05-01 00:33:25 303711643 49.102017-05-01 00:33:55 303771646 49.912017-05-01 00:34:25 303721645 49.94
Post a Comment for "Convert Pandas Dataframe Of Lists To Dict Of Dataframes"