Skip to content Skip to sidebar Skip to footer

Group By Rank Continuous Month By Pandas

This is something different by this postenter link description here. Example ID TIME 01 2018-07-01 01 2018-08-01 01 2018-09-01 01 2018-11-01 01 2018-12-01 01 2

Solution 1:

You can convert datetimes to months periods by Series.dt.to_period and then compare by MonthEnd difference of values by DataFrameGroupBy.diff with cumulative sums and last is used GroupBy.cumcount:

df['TIME'] = pd.to_datetime(df['TIME']).dt.to_period('M')
new = df.groupby('ID', group_keys=False)['TIME'].diff().ne(pd.offsets.MonthEnd()).cumsum()
df['rank'] = df.groupby(['ID',new]).cumcount().add(1)
print (df)
  ID     TIME  RANK  rank
0   1  2018-07     1     1
1   1  2018-08     2     2
2   1  2018-09     3     3
3   1  2018-11     1     1
4   1  2018-12     2     2
5   1  2019-01     3     3
6   2  2019-01     1     1
7   2  2019-02     2     2
8   2  2019-12     1     1
9   2  2020-01     2     2

Post a Comment for "Group By Rank Continuous Month By Pandas"