Keep Same Dataset Augmentation For Input And Output In Tensorflow
I have a batch dataset which contains image as input and output. Code is like this: os.chdir(r'E:/trainTest') def process_img(file_path): img = tf.io.read_file(file_path)
Solution 1:
tf.image
has a bunch of random transformations you can use. For instance:
Here's an example on a completely random image of a cat.
from skimage import data
import matplotlib.pyplot as plt
import tensorflow as tf
cat = data.chelsea()
plt.imshow(cat)
plt.show()
Image with transformation:
from skimage import data
import matplotlib.pyplot as plt
import tensorflow as tf
cat = data.chelsea()
plt.imshow(tf.image.random_hue(cat, .2, .5))
plt.show()
You can implement this in you tf.data.Dataset
like this:
def process_img(file_path):
img = tf.io.read_file(file_path)
img = tf.image.decode_png(img, channels=3)
img = tf.image.convert_image_dtype(img, tf.float32)
img = tf.image.resize(img, size=(img_height, img_width))
img = tf.image.random_hue(img, 0., .5) # Here
return img
I found a way to keep the same transformation in graph mode. It's basically to pass two images in the same call to the transformers.
import os
import tensorflow as tf
os.chdir(r'c:/users/user/Pictures')
from glob2 import glob
import matplotlib.pyplot as plt
x_files = glob('inputs/*.jpg')
y_files = glob('targets/*.jpg')
files_ds = tf.data.Dataset.from_tensor_slices((x_files, y_files))
def load(file_path):
img = tf.io.read_file(file_path)
img = tf.image.decode_jpeg(img, channels=3)
img = tf.image.convert_image_dtype(img, tf.float32)
img = tf.image.resize(img, size=(28, 28))
return img
def process_img(file_path1, file_path2):
img = tf.stack([load(file_path1), load(file_path2)])
img = tf.image.random_hue(img, max_delta=.5)
return img[0], img[1]
files_ds = files_ds.map(lambda x, y: process_img(x, y)).batch(1)
a, b = next(iter(files_ds))
plt.imshow(a[0, ...])
plt.imshow(b[0, ...])
Solution 2:
You can use tf.keras.preprocessing.image.ImageDataGenerator for preprocessing. This is the documentation page for complete options. I have shared a small example on how you could use that with flow_from_directory. You dont have read the images beforehand and use up your RAM. The images are loaded from directory, preprocessed and fed into the model as and when required.
# we create two instances with the same arguments
data_gen_args = dict(rescale=1./255,
shear_range=0.2,
horizontal_flip=True,
rotation_range=90,
width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=0.2)
image_datagen = ImageDataGenerator(**data_gen_args)
mask_datagen = ImageDataGenerator(**data_gen_args)
# Provide the same seed and keyword arguments to the fit and flow methods
seed = 1
image_generator = image_datagen.flow_from_directory(
'data/images',
class_mode=None,
seed=seed)
mask_generator = mask_datagen.flow_from_directory(
'data/masks',
class_mode=None,
seed=seed)
# combine generators into one which yields image and masks
train_generator = zip(image_generator, mask_generator)
model.fit(
train_generator,
steps_per_epoch=2000,
epochs=50)
Post a Comment for "Keep Same Dataset Augmentation For Input And Output In Tensorflow"