Updating A DataFrame Based On Another DataFrame
Given DataFrame df: Id Sex Group Time Time! 0 21 M 2 2.31 NaN 1 2 F 2 2.29 NaN and update: Id Sex Group Time 0 21 M 2 2.36 1 2 F
Solution 1:
I think I would do this with a merge, and then update the columns with a where. First remove the Time column from up:
In [11]: times = up.pop('Time') # up = the update DataFrame
In [12]: df1 = df.merge(up, how='outer')
In [13]: df1
Out[13]:
Id Sex Group Time Time!
0 21 M 2 2.31 NaN
1 2 F 2 2.29 NaN
2 3 F 1 NaN NaN
Update Time if it's not NaN and Time! if it's NaN:
In [14]: df1['Time!'] = df1['Time'].where(df1['Time'].isnull(), times)
In [15]: df1['Time'] = df1['Time'].where(df1['Time'].notnull(), times)
In [16]: df1
Out[16]:
Id Sex Group Time Time!
0 21 M 2 2.31 2.36
1 2 F 2 2.29 2.09
2 3 F 1 1.79 NaN
Post a Comment for "Updating A DataFrame Based On Another DataFrame"